Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(nitrato- κO)(5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane-6,13diaminium- $\kappa^4 N^1, N^4, N^8, N^{11}$)copper(II) dinitrate tetrahydrate

Xiang-Yun Liu^a* and Hong-Ying Chu^b

^aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China, and ^bDepartment of Environment and Chemical Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, People's Republic of China Correspondence e-mail: tianlin1288@163.com

Received 27 May 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.133; data-to-parameter ratio = 15.0.

In the title compound, $[Cu(NO_3)_2(C_{14}H_{36}N_6)](NO_3)_2 \cdot 4H_2O$, the Cu^{II} atom, lying on an inversion center, is six-coordinated in a distorted octahedral environment by four N atoms from a centrosymmetric 14-membered tetraazacyclotetradecane macrocyclic ligand and two O atoms from two nitrate anions. The supramolecular network is consolidated by extensive O– $H \cdots O$ and N– $H \cdots O$ hydrogen-bonding interactions.

Related literature

For Cu(II) complexes of related macrocyclic ligands, see: Bernhardt (1999); Bernhardt & Sharpe (1998).

Experimental

Crystal data	
$[Cu(NO_3)_2(C_{14}H_{36}N_6)](NO_3)_2$.	a = 9.201 (2) Å
$4H_2O$	b = 16.576 (4) Å
$M_r = 672.14$	c = 9.278 (2) Å
Monoclinic, $P2_1/n$	$\beta = 98.788 \ (4)^{\circ}$

 $V = 1398.4 (5) \text{ Å}^3$ Z = 2Mo *K*\alpha radiation

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.739, T_{max} = 0.774$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.133$ S = 1.033021 reflections 202 parameters 6 restraints $\mu = 0.87 \text{ mm}^{-1}$ T = 123 K $0.37 \times 0.34 \times 0.31 \text{ mm}$

6071 measured reflections 3021 independent reflections 2269 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=1.24~e~\AA^{-3}\\ &\Delta\rho_{min}=-0.81~e~\AA^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1C···O3	0.93	2.43	3.155 (4)	134
$N1 - H1C \cdot \cdot \cdot O2W^{i}$	0.93	2.28	3.096 (4)	146
$N2 - H2A \cdots O3$	0.93	2.52	3.244 (4)	135
$N2-H2A\cdots O4^{ii}$	0.93	2.47	3.249 (4)	141
$N3-H3D\cdots O4$	0.91	2.08	2.924 (4)	155
$N3-H3E\cdotsO1W^{iii}$	0.91	1.86	2.748 (4)	164
$N3-H3F\cdots O2^{i}$	0.91	2.06	2.902 (4)	154
$N3 - H3F \cdot \cdot \cdot O3^{i}$	0.91	2.32	3.108 (4)	145
$O1W - H1WA \cdots O2^{i}$	0.84(4)	2.01 (3)	2.823 (4)	160 (5)
$O1W-H1WB\cdots O5^{iv}$	0.84 (2)	1.97 (2)	2.795 (4)	168 (5)
O2W−H2WA···O6 ⁱⁱ	0.93 (5)	2.00 (5)	2.913 (5)	166 (5)
$O2W-H2WB\cdots O6^{v}$	0.92 (2)	2.18 (2)	3.084 (5)	167 (5)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) x - 1, y, z; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Henan University of Urban Construction for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2316).

References

Bernhardt, P. V. (1999). Inorg. Chem. 38, 3481-3483.

Bernhardt, P. V. & Sharpe, P. C. (1998). Inorg. Chem. 37, 1629-1236.

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

metal-organic compounds

supplementary materials

Acta Cryst. (2010). E66, m837 [doi:10.1107/S1600536810023342]

Bis(nitrato- κO)(5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diaminium- $\kappa^4 N^1, N^4, N^8, N^{11}$)copper(II) dinitrate tetrahydrate

X.-Y. Liu and H.-Y. Chu

Comment

In the past, much attention has been given to the copper complexes of macrocyclic *trans*-5(R),7(R),12(R), 14(R)-tetramethyl-6, 13-dinitro-1,4,8,11-tetraazacyclotetradecane and related ligands (Bernhardt, 1999; Bernhardt & Sharpe, 1998). Recently, we have synthesized a Cu(II) complex based on 5,7,12,14-tetramethyl-6,13- diamino-1,4,8,11-tetraazacyclotetradecane and its structure is reported here.

The asymmetric unit of the title compound (Fig. 1) contains one Cu^{II} ion lying on an inversion center, one half of a 14-membered tetraazacyclotetradecane macrocyclic ligand, one coordinated nitrate anion, one uncoordinated nitrate anion and two solvent water molecules. The Cu^{II} ion has a slightly distorted octahedral coordination geometry, with two O atoms from two nitrate anions in the axial positions. The equatorial positions are occupied by four N atoms from the centrosymmetric 14-membered tetraazacyclotetradecane macrocyclic ligand [Cu1—N1 2.025 (2) and Cu1—N2 2.020 (2) Å]. The two uncoordinated nitrate anions are located above and below the 14-membered tetraazacyclotetradecane macrocycle and linked to the macrocycle *via* N—H···O hydrogen bonds (Table 1).

Experimental

An aqueous solution of 5,7,12,14-tetramethyl-6,13-diamino-1,4,8,11-tetraazacyclotetradecane (0.27 g, 1.0 mmol), Cu(NO₃)₂ (0.10 g, 0.5 mmol) and Na₂CO₃ (0.05 g, 0.5 mmol) was heated to reflux for 24 h. The reaction mixture was cooled to room temperature and red crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

H atoms bound to C and N atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 1.00 (CH), 0.99 (CH₂) and 0.98 (CH₃) Å and N—H = 0.93 (NH) and 0.91 (NH₃) Å and with $U_{iso}(H) = 1.2-1.5$ $U_{eq}(C, N)$. H atoms attached to water molecules were located in a difference Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(O)$. The highest residual electron density was found 0.91 Å from O3 the deepest hole 0.52 Å from H2WA.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 2-x, -y, 1-z.]

Bis(nitrato- κO)(5,7,12,14-tetramethyl-1,4,8,11- tetraazacyclotetradecane-6,13-diaminium- $\kappa^4 N^1, N^4, N^8, N^{11}$)copper(II) dinitrate tetrahydrate

F(000) = 710

 $\theta = 2.5 - 27.0^{\circ}$

 $\mu = 0.87 \text{ mm}^{-1}$ T = 123 K

 $0.37 \times 0.34 \times 0.31 \text{ mm}$

Block, red

 $D_{\rm x} = 1.596 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2543 reflections

Crystal data

[Cu(NO₃)₂(C₁₄H₃₆N₆)](NO₃)₂·4H₂O $M_r = 672.14$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.201 (2) Å b = 16.576 (4) Å c = 9.278 (2) Å $\beta = 98.788$ (4)° V = 1398.4 (5) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer	3021 independent reflections
Radiation source: fine-focus sealed tube	2269 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
ϕ and ω scans	$\theta_{\text{max}} = 27.1^{\circ}, \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -11 \rightarrow 11$
$T_{\min} = 0.739, T_{\max} = 0.774$	$k = -21 \rightarrow 17$
6071 measured reflections	$l = -10 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.133$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0649P)^{2} + 2.4391P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3021 reflections	$(\Delta/\sigma)_{\rm max} = 0.036$
202 parameters	$\Delta \rho_{max} = 1.24 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.81 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x y z $U_{\rm iso}^{*}/U_{\rm eq}$

C1	0 8753 (4)	0.0883(2)	0 2521 (3)	0 0169 (7)
HIA	0.9413	0.1356	0.2695	0.020*
HIB	0.7886	0.1039	0.1807	0.020*
C2	0.7676 (3)	0 13149 (18)	0.4684(3)	0.0136 (6)
H2	0.8477	0.1722	0.4930	0.016*
C3	0.6400 (4)	0.1722 0.1717(2)	0.3687 (3)	0.0234(8)
НЗА	0.6749	0.1921	0.2809	0.025*
H3B	0.6019	0.2167	0.4205	0.035*
H3C	0.5616	0.1322	0.3408	0.035*
C/	0.7205 (3)	0.1022	0.5408	0.055
С4 Н4	0.7203 (3)	0.0527	0.5888	0.0129 (0)
C5	0.0574	0.0527 0.08012 (10)	0.3666 (2)	0.010
U5	0.0440 (5)	0.06013 (19)	0.7300 (3)	0.0137 (0)
115 C6	0.7973	0.0042	0.0224 0.7842 (2)	0.010^{-1}
	0.9474 (5)	0.13070 (19)	0.7845 (5)	0.0107 (7)
НОА	0.8880	0.1378	0.8774	0.025*
Нов	0.8889	0.1991	0.7960	0.025*
H6C	1.0105	0.1608	0.7102	0.025*
C7	1.0453 (3)	-0.0192 (2)	0.8066 (3)	0.0170 (7)
H/A	1.0050	-0.0366	0.8947	0.020*
H'/B	1.1144	0.0259	0.8342	0.020*
Cul	1.0000	0.0000	0.5000	0.01124 (16)
N1	0.8274 (3)	0.06223 (16)	0.3922 (2)	0.0120 (5)
H1C	0.7509	0.0256	0.3683	0.014*
N2	0.9236 (3)	0.00785 (15)	0.6924 (3)	0.0128 (5)
H2A	0.8545	-0.0334	0.6882	0.015*
N3	0.6297 (3)	0.16570 (17)	0.6691 (3)	0.0173 (6)
H3D	0.6722	0.2147	0.6611	0.026*
H3E	0.6241	0.1555	0.7645	0.026*
H3F	0.5376	0.1657	0.6167	0.026*
N5	0.7860 (3)	0.36290 (18)	0.6169 (3)	0.0214 (6)
O4	0.6922 (3)	0.33861 (18)	0.6897 (3)	0.0377 (7)
05	0.8513 (3)	0.31313 (17)	0.5511 (3)	0.0399 (7)
O6	0.8117 (3)	0.43623 (16)	0.6061 (4)	0.0402 (7)
O1W	0.1266 (3)	0.33514 (16)	0.4647 (3)	0.0236 (5)
O2W	0.4173 (4)	0.0272 (3)	0.8131 (4)	0.0592 (10)
H1WA	0.168 (5)	0.291 (2)	0.489 (6)	0.071*
H1WB	0.039 (3)	0.334 (3)	0.481 (6)	0.071*
H2WA	0.494 (5)	-0.008 (3)	0.846 (6)	0.071*
H2WB	0.396 (6)	0.045 (3)	0.901 (3)	0.071*
N4	0.7300 (3)	-0.14301 (18)	0.4733 (3)	0.0233 (6)
01	0.8658 (2)	-0.13506 (15)	0.4843 (2)	0.0226 (5)
O2	0.6711 (3)	-0.21048 (15)	0.4441 (3)	0.0252 (6)
03	0.6522 (3)	-0.08487 (18)	0.4963 (4)	0.0520 (9)
	^1			

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0194 (16)	0.0188 (17)	0.0124 (14)	0.0044 (13)	0.0023 (11)	0.0043 (12)

supplementary materials

C2	0.0175 (15)	0.0104 (15)	0.0122 (14)	0.0038 (12)	0.0004 (11)	0.0000 (11)
C3	0.0233 (18)	0.032 (2)	0.0150 (15)	0.0136 (15)	0.0039 (13)	0.0031 (14)
C4	0.0113 (14)	0.0153 (16)	0.0120 (13)	0.0026 (12)	0.0014 (11)	-0.0013 (11)
C5	0.0141 (15)	0.0155 (16)	0.0117 (13)	0.0025 (12)	0.0021 (11)	0.0011 (11)
C6	0.0171 (15)	0.0130 (16)	0.0192 (15)	0.0000 (12)	-0.0003 (12)	-0.0031 (12)
C7	0.0175 (15)	0.0232 (18)	0.0094 (13)	0.0068 (13)	-0.0009 (11)	0.0019 (11)
Cu1	0.0120 (3)	0.0135 (3)	0.0079 (2)	0.0030 (2)	0.00051 (17)	0.0002 (2)
N1	0.0121 (12)	0.0128 (13)	0.0112 (11)	0.0008 (10)	0.0022 (9)	-0.0003 (10)
N2	0.0123 (12)	0.0143 (14)	0.0113 (11)	0.0017 (10)	-0.0001 (9)	0.0009 (10)
N3	0.0161 (13)	0.0226 (16)	0.0134 (12)	0.0050 (11)	0.0030 (10)	-0.0006 (11)
N5	0.0167 (14)	0.0227 (16)	0.0244 (14)	0.0033 (12)	0.0021 (11)	0.0008 (12)
O4	0.0357 (16)	0.0389 (17)	0.0442 (16)	0.0024 (13)	0.0241 (13)	0.0093 (13)
O5	0.0442 (17)	0.0260 (15)	0.0558 (18)	-0.0001 (13)	0.0282 (14)	-0.0111 (13)
O6	0.0382 (16)	0.0149 (14)	0.071 (2)	-0.0009 (12)	0.0184 (14)	-0.0028 (13)
O1W	0.0252 (13)	0.0268 (14)	0.0192 (12)	-0.0001 (11)	0.0047 (10)	0.0005 (10)
O2W	0.051 (2)	0.068 (3)	0.056 (2)	0.0019 (19)	-0.0006 (17)	-0.0158 (19)
N4	0.0187 (14)	0.0206 (16)	0.0305 (16)	-0.0036 (12)	0.0031 (12)	-0.0016 (12)
01	0.0153 (11)	0.0264 (14)	0.0268 (12)	-0.0057 (10)	0.0053 (9)	-0.0017 (10)
O2	0.0212 (12)	0.0197 (13)	0.0327 (13)	-0.0060 (10)	-0.0022 (10)	-0.0022 (10)
O3	0.0230 (15)	0.0230 (16)	0.111 (3)	0.0001 (12)	0.0151 (16)	-0.0074 (17)

Geometric parameters (Å, °)

C1—N1	1.499 (4)	$C7-C1^{i}$	1.505 (4)
C1—C7 ⁱ	1.505 (4)	C7—H7A	0.9900
C1—H1A	0.9900	C7—H7B	0.9900
C1—H1B	0.9900	Cu1—N2	2.020 (2)
C2—N1	1.496 (4)	Cu1—N1	2.025 (2)
C2—C3	1.532 (4)	Cu1—O1	2.550 (2)
C2—C4	1.539 (4)	N1—H1C	0.9300
С2—Н2	1.0000	N2—H2A	0.9300
С3—НЗА	0.9800	N3—H3D	0.9100
С3—Н3В	0.9800	N3—H3E	0.9100
С3—Н3С	0.9800	N3—H3F	0.9100
C4—N3	1.500 (4)	N5—O5	1.235 (4)
C4—C5	1.542 (4)	N5—O4	1.241 (4)
C4—H4	1.0000	N5—O6	1.245 (4)
C5—N2	1.491 (4)	O1W—H1WA	0.84 (4)
C5—C6	1.526 (4)	O1W—H1WB	0.84 (2)
С5—Н5	1.0000	O2W—H2WA	0.93 (5)
С6—Н6А	0.9800	O2W—H2WB	0.91 (2)
С6—Н6В	0.9800	N4—O3	1.239 (4)
С6—Н6С	0.9800	N4—O1	1.245 (4)
C7—N2	1.488 (3)	N4—O2	1.254 (4)
N1—C1—C7 ⁱ	108.5 (2)	N2—C7—H7A	109.9
N1—C1—H1A	110.0	C1 ⁱ —C7—H7A	109.9
C7 ⁱ —C1—H1A	110.0	N2—C7—H7B	109.9
N1—C1—H1B	110.0	C1 ⁱ —C7—H7B	109.9

C7 ⁱ —C1—H1B	110.0	H7A—C7—H7B	108.3
H1A—C1—H1B	108.4	N2 ⁱ —Cu1—N1	87.06 (10)
N1—C2—C3	110.6 (2)	N2—Cu1—N1	92.94 (10)
N1—C2—C4	109.4 (2)	O1—Cu1—N1	94.74 (9)
C3—C2—C4	111.7 (3)	O1—Cu1—N2	82.89 (8)
N1—C2—H2	108.3	O1—Cu1—N1 ⁱ	85.26 (9)
C3—C2—H2	108.3	O1—Cu1—N2 ⁱ	97.11 (8)
С4—С2—Н2	108.3	C2—N1—C1	111.5 (2)
С2—С3—Н3А	109.5	C2—N1—Cu1	118.36 (17)
С2—С3—Н3В	109.5	C1—N1—Cu1	105.27 (18)
НЗА—СЗ—НЗВ	109.5	C2—N1—H1C	107.1
С2—С3—Н3С	109.5	C1—N1—H1C	107.1
НЗА—СЗ—НЗС	109.5	Cu1—N1—H1C	107.1
НЗВ—СЗ—НЗС	109.5	C7—N2—C5	113.0 (2)
N3—C4—C2	109.0 (2)	C7—N2—Cu1	106.55 (18)
N3—C4—C5	106.5 (2)	C5—N2—Cu1	123.02 (18)
C2—C4—C5	116.8 (3)	C7—N2—H2A	104.1
N3—C4—H4	108.1	C5—N2—H2A	104.1
C2—C4—H4	108.1	Cu1—N2—H2A	104.1
C5—C4—H4	108.1	C4—N3—H3D	109.5
N2—C5—C6	113.0 (2)	C4—N3—H3E	109.5
N2—C5—C4	108.3 (2)	H3D—N3—H3E	109.5
C6—C5—C4	113.3 (3)	C4—N3—H3F	109.5
N2—C5—H5	107.3	H3D—N3—H3F	109.5
С6—С5—Н5	107.3	H3E—N3—H3F	109.5
C4—C5—H5	107.3	O5—N5—O4	118.9 (3)
С5—С6—Н6А	109.5	O5—N5—O6	120.0 (3)
С5—С6—Н6В	109.5	O4—N5—O6	121.1 (3)
H6A—C6—H6B	109.5	H1WA—O1W—H1WB	109 (4)
С5—С6—Н6С	109.5	H2WA—O2W—H2WB	99 (4)
H6A—C6—H6C	109.5	O3—N4—O1	120.2 (3)
H6B—C6—H6C	109.5	O3—N4—O2	119.3 (3)
N2—C7—C1 ^{i}	109.0 (2)	01—N4—O2	120.5 (3)
N1—C2—C4—N3	-167.0 (2)	N2 ⁱ —Cu1—N1—C2	-142.1 (2)
C3—C2—C4—N3	-44.1 (3)	N2—Cu1—N1—C2	37.9 (2)
N1-C2-C4-C5	72.4 (3)	N2 ⁱ —Cu1—N1—C1	-16.78 (19)
C3—C2—C4—C5	-164.7 (3)	N2—Cu1—N1—C1	163.22 (19)
N3—C4—C5—N2	171.2 (2)	C1 ⁱ —C7—N2—C5	-175.9 (3)
C2-C4-C5-N2	-66.9 (3)	C1 ⁱ —C7—N2—Cu1	-37.9 (3)
N3—C4—C5—C6	-62.6 (3)	C6—C5—N2—C7	54.5 (3)
C2—C4—C5—C6	59.3 (3)	C4—C5—N2—C7	-179.2 (2)
C3—C2—N1—C1	56.7 (3)	C6—C5—N2—Cu1	-75.7 (3)
C4—C2—N1—C1	-179.9 (2)	C4—C5—N2—Cu1	50.7 (3)
C3—C2—N1—Cu1	178.9 (2)	N1 ⁱ —Cu1—N2—C7	11.4 (2)
C4—C2—N1—Cu1	-57.6 (3)	N1—Cu1—N2—C7	-168.6 (2)
C7 ⁱ —C1—N1—C2	171.5 (2)	N1 ⁱ —Cu1—N2—C5	144.2 (2)

supplementary materials

C7 ⁱ —C1—N1—Cu1 Symmetry codes: (i) $-x+2, -y, -z+1$.	42.0 (3)	N1—Cu1—N2—C5		-35.8 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1C···O3	0.93	2.43	3.155 (4)	134
N1—H1C···O2W ⁱⁱ	0.93	2.28	3.096 (4)	146
N2—H2A···O3	0.93	2.52	3.244 (4)	135
N2—H2A····O4 ⁱⁱⁱ	0.93	2.47	3.249 (4)	141
N3—H3D…O4	0.91	2.08	2.924 (4)	155
N3—H3E····O1W ^{iv}	0.91	1.86	2.748 (4)	164
N3—H3F····O2 ⁱⁱ	0.91	2.06	2.902 (4)	154
N3—H3F···O3 ⁱⁱ	0.91	2.32	3.108 (4)	145
O1W—H1WA···O2 ⁱⁱ	0.84 (4)	2.01 (3)	2.823 (4)	160 (5)
O1W—H1WB····O5 ^v	0.84 (2)	1.97 (2)	2.795 (4)	168 (5)
O2W—H2WA···O6 ⁱⁱⁱ	0.93 (5)	2.00 (5)	2.913 (5)	166 (5)
O2W—H2WB…O6 ^{vi}	0.92 (2)	2.18 (2)	3.084 (5)	167 (5)

Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+3/2, y-1/2, -z+3/2; (iv) x+1/2, -y+1/2, z+1/2; (v) x-1, y, z; (vi) x-1/2, -y+1/2, z+1/2.

Fig. 1